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Abstract A variety of problems in computer science, operations research, control
theory, etc., can be modeled as non-linear and non-differentiable max–min systems.
This paper introduces the global optimization into such systems. The criteria for the
existence and uniqueness of the globally optimal solutions are established using the
high matrix, optimal max-only projection set and ks-control vector of max–min func-
tions. It is also shown that the global optimization can be accomplished through the
partial max-only projection representation with algebraic and combinatorial features.
The methods are constructive and lead to an algorithm of finding all globally optimal
solutions.

Keywords Global optimization · High matrix · ks- control vector · Max–min
system · Optimal max-only projection set

1 Introduction

A number of problems arising in computer science, operations research, control
theory, etc., can be modeled as discrete-event systems with maximum and mini-
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mum constraints which include examples less well-known to mathematicians, such as
digital circuits, computer networks or automated manufacturing plants (Baccelli et al.
1992; Chakraborty et al. 1999; Du and Pardalos 1995; Gunawardena 1993a, b; Hulg-
aard et al. 1995; Sakallan et al. 1992; Szymanski and Shenoy 1992). These systems,
called max–min systems, are described by non-linear and non-differentiable max–
min functions in which the operations maximum, minimum, and addition appear
simultaneously. Max–min systems are non-linear extensions of max systems with only
maximum constraints (or only minimum constraints). Max systems which are based
on two operations maximum and addition are well understood by methods based
on max-plus algebra (Baccelli et al. 1992; Cassandras and Lafortune 1999; Cohen
et al. 1984, 1989; Cuninghame-Green 1979). The study of max–min systems arouses
the great interest of some researchers from different fields since 1990s (Baccelli and
Mairesse 1998; Cochet-Terransson et al. 1999; Gaubert and Gunawardena 1998a, b;
Gunawardena 1993a, b, 1994a, b; Hulgaard et al. 1995; Olsder 1991, 1993; Sakallan
et al. 1992; Szymanski and Shenoy 1992; van der Woude and Subiono 2003). The final
strand in the historical sketch begins with the work of Olsder (1991) on the existence
of a fixed point (or an eigenvector) in separated max–min systems. Then, there have
been many studies for max–min systems, primarily on the existence and calculation
of a fixed point and a cycle time (or an eigenvalue). For example, by introducing max-
only and min-only projection representations of max–min functions, Gunawardena
(1994b) described the Duality Conjecture which gives not only the existence of a cycle
time but also a method of calculating it in terms of the structure of max–min func-
tions. Gaubert and Gunawardena (1998a, b) proved the Duality Conjecture (usually
called Duality Theorem) and provided an algorithm to compute a cycle time based on
policy iteration. Cochet-Terransson et al. (1999) obtained a constructive fixed point
theorem for general max–min systems. van der Woude and Subiono (2003) presented
a necessary and sufficient condition of the structural existence of an eigenvalue and a
corresponding fixed point for bipartite max–min systems.

There has been increasing interest in the programming of max–min systems due to
its significance both in theory and applications and much closely related work has been
done. For example, for the disjunctive programming, Beaumont (1990) presented an
algorithm for disjunctive programming problems; Lee and Grossmann (2000, 2001)
presented a global optimization algorithm for non-convex generalized disjunctive
programming problems that involve bilinear, linear fractional, and concave separable
functions; Grossmann and Lee (2003) proposed a convex non-linear relaxation of the
non-linear convex generalized disjunctive programming problem that relies on the
convex hull of each of the disjunctions, that is, obtained by variable disaggregation
and reformulation of inequalities. For the minimal realization and complementarity,
De Schutter and De Moor(1995a, b) showed that the minimal state space realization
problem in max-plus algebra can be transformed into an extended linear comple-
mentarity problem, which is an extension of the well-known linear complementarity
problem; Gaubert et al. (1998) showed that the minimal dimension of a linear realiza-
tion over the (max,+) semiring of a convex sequence is equal to the minimal size of a
decomposition of the sequence as a supremum of discrete affine maps; Ralph (2002)
showed how the stability or conditioning properties of globally metrically regular hor-
izontal linear complementarity problems are preserved by a homotopy framework for
solving the HLCP that finds a stable direction at each iteration as a local minimizer
of a strongly convex quadratic program with linear complementarity constraints; De
Schutter et al. (2002) showed the extended linear complementarity problem with
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bounded surplus variables over the feasible set or with a bounded feasible set can be
recast as a standard linear complementarity problem. For the cutting angle method,
Andramonov et al. proposed the cutting angle method which is a deterministic tech-
nique is applicable to a very broad class of non-convex global optimization problems
(Andramonov et al. 1999; Rubinov 2000); Batten and Beliakov described the fast
algorithm for the cutting angle method of global optimization (Batten and Beliakov
2002; Rubinov 2000); Bagirov and Rubinov dealt with combinations of the cutting
angle method in global optimization (Bagirov and Rubinov 2003; Rubinov 2000).

This paper considers the following programming problem for max–min systems:

minimize F(x),

subject to x ∈ X , (1)

where F(x) is a max–min function of R
n to R

m, X := {x ∈ R
n| ∑n

j=1 xj = b, xj ≥
0, 1 ≤ j ≤ n, b > 0}. Problems that can be described by (1) appear in a number of
practical applications with regard to scheduling and games, and belong to non-linear
and non-differentiable programming (Du et al. 2001; Horst et al. 2000; Pardalos et al.
2002). It is notable that the objective function in (1) is a vector valued function.

To motivate the real-world background of the programming problem above, let
us see a manufacturing system with both maximum and minimum types of timing
constraints. To simplify the presentation, the following assumptions are made on this
system: (1) This manufacturing system consists of five machines Mi, 1 ≤ i ≤ 5; (2)
Machine M1 starts a processing when two workpieces transported from M3 and M4,
respectively, arrive at M1; (3) Machine M2 starts a processing when a workpiece
transported from either M3 or M5 arrives at M2; (4) The processing finish time of
a workpiece at M3, M4, and M5 is variable and the transport time of a workpiece
between two machines is fixed; (5) The sum of the processing finish time of M3, M4,
and M5 is constant. Let T1 and T2 be the processing start time of machines M1 and
M2, respectively, and similarly τ3, τ4, and τ5 the processing finish time of machines
M3, M4, and M5. Also let δ1,3 and δ1,4 denote the transport time from M3 and M4 to
M1, respectively, and similarly δ2,3 and δ2,5 the transport time from M3 and M5 to M2.
So, it is clear from assumptions (2) and (3) above that the processing start time of M1
and M2 can be described by

T1 = max(δ1,3 + τ3, δ1,4 + τ4),
T2 = min(δ2,3 + τ3, δ2,5 + τ5).

(2)

Let T =
[

T1
T2

]

. To improve the efficiency of this manufacturing system, one needs

to find the earliest start time of machines M1 and M2 when the total processing fin-
ish time of machines M3, M4, and M5 is given. Taking assumptions (4) and (5) into
account, the earliest start time of machines M1 and M2 can be determined by solving
the following minimization problem:

minimize T subject to τ3 + τ4 + τ5 = constant, (3)

where T is a max–min function of R
3 to R

2 and is a non-linear and non-differentiable
vector valued function. It can be seen from (2) that the variables of components T1
and T2 are not independent. When the global optimal solution to the above minimiza-
tion problem is obtained, the operating time of the individual machines in the system
can effectively be adjusted to achieve the optimal design of the system.
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The global optimization will be introduced to solve programming problem (1). It
is interesting to obtain characterization of global solutions of the optimization. Based
on the combinatorial nature of the problem, this paper will establish the criteria of
the existence and uniqueness of the globally optimal solutions and develop an algo-
rithm of finding all solutions. Also some new concepts on max–min functions will be
introduced and the max-only projection representation of max–min functions will be
used to solve the problem.

The next section describes the basic definitions of global optimization and globally
optimal solution to programming problem (1). These definitions provide the main
themes for the rest of the paper. Section 3 introduces and characterizes the concept
of high matrix and establishes the criteria of the existence and uniqueness of globally
optimal solutions of max-only systems (Theorem 1). By introducing the optimal max-
only projection set and ks-control vector of max–min functions, Section 4 proves two
main results, Theorems 2 and 3, which give the criteria of the existence and uniqueness
of globally optimal solutions of max–min systems. Section 5 presents an algorithm of
finding all globally optimal solutions and provides a numerical example to illustrate
it. Also, this section discusses the complexity of the algorithm and shows that for
max-only systems, the algorithm has polynomial bound (Theorem 4). Section 6 draws
some conclusions of the paper and highlights future work.

2 Basic definitions

Let us start with the partial order on real vectors, an arbitrary max–min function and
max-plus algebra. After discussing some necessary technicalities it dissects the pro-
gramming problem (1) and gives the definitions of global optimization and globally
optimal solution.

Let R be a set of all real numbers and R
n an n-dimensional column vector set over

R. The notations a∨b and a∧b stand for the maximum and minimum of real numbers
a and b, respectively, i.e.,

a ∨ b := max(a, b) and a ∧ b := min(a, b).

It is easy to see that + distributes over both ∨ and ∧, i.e.,

(a ∨ b) + c = (a + c) ∨ (b + c) and (a ∧ b) + c = (a + c) ∧ (b + c).

It is assumed that + always has higher precedence than either ∨ or ∧ in this paper.
The equalities above can hence be rewritten as

(a ∨ b) + c = a + c ∨ b + c and (a ∧ b) + c = a + c ∧ b + c,

respectively. Vectors in R
n are denoted by a bold lower case letter, e.g., x and xj

denotes the jth component of x. The notation x ≤ y denotes the usual partial order
on R

n, i.e.,

x ≤ y ⇐⇒ xj ≤ yj, for 1 ≤ j ≤ n. (4)

The operations ∨ and ∧ are also applied to vectors:

(x ∨ y)j = xj ∨ yj and (x ∧ y)j = xj ∧ yj for 1 ≤ j ≤ n.
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A max–min function of type (n, 1) is any function f : R
n → R

1, which can be written
as a term in the following grammar:

f := x1, . . . , xn|f + a|f ∨ f |f ∧ f , (5)

where x1, . . . , xn are variables and a ∈ R is a parameter, and denoted by f (x). The nota-
tion above is the Backus–Naur form known from computer science. Here the vertical
bars separate the different ways in which terms can recursively be constructed. The
simplest term is one of the n variables, xj, thought of as the jth component function.
Given any term, a new one may be constructed by adding a; given two terms, a new
one may be constructed by taking the maximum or the minimum. Only these rules
may be used to build terms. For example, for the following three terms

((x1 + 1 ∧ x2) ∨ x3) + 1, x2 ∧ 2, x2 + 4 ∨ x1 + x3,

the first is a max–min function which can be regarded as of type (3, 1) but neither the
second nor the third can be generated by the grammar (5). Although the above gram-
mar provides a convenient syntax to write terms, this paper is interested in them only
as functions from R

n to R. Terms can therefore be rearranged using the distributivity
of the operations ∨ and ∧, as well as the fact that + distributes over both ∨ and ∧.
The first term above can hence be simplified further to

(x1 + 2 ∨ x3 + 1) ∧ (x2 + 1 ∨ x3 + 1).

A max–min function of type (n, m) is any function F : R
n → R

m, such that each com-
ponent is a max–min function of type (n, 1), and denoted by F(x). It is easy to see from
the definitions that F(x) is a non-linear and non-differentiable function. A max–min
function of type (n, 1) which uses only ∨ and + is said to be max-only. A max–min
function of type (n, m) is said to be max-only if its components are all max-only.

A max–min system is a system that can be described using a max–min function.
A max-only system, usually a max system, is a special max–min system where all the
components are max-only functions.

For h ∈ R and x ∈ R
n, set x + h = [x1 + h . . . xn + h]τ , where τ denotes the

transpose of a vector. The following lemma collects three well-known properties of
max–min functions of type (n, m) together.

Lemma 1 Let F(x) be a max–min function of type (n, m). If x, y ∈ R
n and h ∈ R, then

the following statements hold.

1. Continuity F(x) is continuous in x.

2. Monotonicity x ≤ y 	⇒ F(x) ≤ F(y).

3. Homogeneity F(x + h) = F(x) + h.

Max-plus algebra is a structure consisting of the set R ∪ {−∞} together with two
operators ∨ and +, denoted by Rmax. The zero element for ∨ is −∞ : a ∨ −∞ = a
for all a ∈ Rmax. Usually, −∞ is denoted by ε. Let R

m×n
max be an m × n matrix set over

Rmax. If A = [aij] ∈ R
m×n
max and x ∈ R

n, then the product Ax of A and x over Rmax is
the m-dimensional column vector whose ith component is defined as ∨1≤j≤naij + xj.
A more complete overview of max-plus algebra can be found in Baccelli et al. (1992)
and Cuninghame-Green (1979).
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The component of max–min function F(x) of type (n, m), denoted by Fi(x), can
uniquely be placed in the so-called conjunctive normal form:

Fi(x) = f 1
i (x) ∧ . . . ∧ f l(i)

i (x), (6)

where the max-only functions f αi
i (x) = aαi

i1 +x1∨. . .∨aαi
in +xn, aαi

ij ∈ Rmax, 1 ≤ αi ≤ l(i),
are of type (n, 1), l(i) is the number of max-only functions of type (n, 1) in (6), and for
1 ≤ αi �= βi ≤ l(i), [aαi

i1 . . . aαi
in] ≤ [aβi

i1 . . . aβi
in] does not hold (Here, it is arranged that

∀a ∈ Rmax, a ≥ ε.). aαi
ij is called the coefficient of the jth variable xj of f αi

i (x). If aαi
ij = ε,

a term of the form aαi
ij + xj merely indicates the absence of the variable xj, i.e., xj does

not contribute in f αi
i (x). Since each component Fi(x) must have at least one variable

in it, there must exist an aαi
ij �= ε in f αi

i (x). Fi(x) can be put in conjunctive form using
simplification rules in Section 3.1.3 in Baccelli et al. (1992) and its normal form can be
obtained by the way of Section 2 in Gunawardena (1994a). The conjunctive normal
form (6) is unique up to re-ordering of the f αi

i (x). The proof of the uniqueness can be
found in Appendix in Gunawardena (1994a). Let us continue with our example. The
conjunctive normal form of the max–min function ((x1 +1∧x2)∨x3)+1 of type (3, 1)

is

(2 + x1 ∨ ε + x2 ∨ 1 + x3) ∧ (ε + x1 ∨ 1 + x2 ∨ 1 + x3).

Let c denote the m-dimensional column vector [c1 . . . cm]τ , where

ci = ∧1≤αi≤l(i) ∨1≤j≤n aαi
ij , 1 ≤ i ≤ m. (7)

It follows immediately from Fi(x) �= ε, 1 ≤ i ≤ m and (6) that c ∈ R
m. The next lemma

gives the range of F(x) over X .

Lemma 2 Let F(x) be a max–min function of type (n, m). For any x ∈ X , c ≤ F(x) ≤
c + b.

Proof Let b denote the n-dimensional column vector [b . . . b]τ . ∀x ∈ X , since x ≥
0 := [0 . . . 0]τ (∈ R

n), [∑n
j=1 xj . . .

∑n
j=1 xj]τ ≥ x, i.e., b ≥ x. By the properties of

monotonicity and homogeneity of F(x),

c = F(0) ≤ F(x) ≤ F(b) = F(0 + b) = F(0) + b = c + b.

The proof is completed. ��
Programming problem (1) can be solved by considering the problem below: Given

X and F(x), find at least one vector x̄ ∈ X such that

F(x̄) ≤ F(x) for all x ∈ X (8)

or show that such a vector does not exist.

Definition 1 Problem (8) is called the global optimization of programming problem
(1) and a vector x̄ is said to be the globally optimal solution. F(x̄) is called the global
minimum of F(x) over X .

For the constraint condition
∑n

j=1 xj = b, xj ≥ 0, 1 ≤ j ≤ n, b > 0, Lemma 2 indicates
that c is the lower bound of F(x) with respect to the partial order of (4). Based on
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Lemma 2 and the property of continuity of F(x), the solution set of (8) and that of the
equation F(x) = c are the same. Hence, the global optimization (8) can be reduced to
the study of the equation F(x) = c.

Let F(x) be a max–min function of type (n, m) in which each of the components is
written as (6). If aα1

1j = . . . = aαm
mj = ε in the coefficients of the jth variable xj, then by

setting x̄j = b, x̄k = 0, 1 ≤ k ≤ n, k �= j, the globally optimal solution x̄ = [x̄1 . . . x̄n]τ
is obtained. For this case, without loss of generality, in the rest of this paper, it is
assumed that F(x) satisfies the following condition:

[aα1
1j . . . aαm

mj ]τ �= θ , for 1 ≤ αi ≤ l(i), 1 ≤ i ≤ m, 1 ≤ j ≤ n, (9)

where θ is a zero vector in R
m
max (an m-dimensional column vector set over Rmax).

3 Max-only systems and high matrix

This section studies the special case of global optimization (8) in which the objective
function is a max-only function of type (n, m): the global optimization of max-only
systems. The concepts and results to be proposed are vital to the general case.

Let F(x) be a max-only function of type (n, m). It is easy to see that F(x) can
uniquely be written in canonical form:

Fi(x) = ai1 + x1 ∨ . . . ∨ ain + xn, 1 ≤ i ≤ m, (10)

where aij ∈ Rmax. If A = [aij] is the corresponding matrix over Rmax then, using
max-plus matrix notation, F(x) = Ax. It is well known that there is a one-to-one
correspondence between max-only functions of type (n, m) and m × n matrices (with
at least one non-zero element per row) over Rmax.

Definition 2 Let A be an m × n matrix over Rmax. A is said to be high if each of its
columns contains the maximal element of a row.

Before proceeding further, it may be helpful to see an example. For the matrix

A =
[

2 1 2
ε 1 1

]

,

2 and 1 are the maximal elements of the first and the second rows, respectively. It
follows directly from Definition 2 that A is a high matrix.

The following notations are used to characterize the high matrix. Let A = [aij] be
an m × n matrix over Rmax. Set

Qj = {q|aqj �= ε}, 1 ≤ j ≤ n, (11)

kj = min
q∈Qj

(cq − aqj), 1 ≤ j ≤ n, (12)

Ti = {t|ait ≥ aij, 1 ≤ j ≤ n}, 1 ≤ i ≤ m, (13)

N = {1, . . . , n} and k = [k1 . . . kn]τ . It follows from assumption (9) that Qj �= ∅, 1 ≤
j ≤ n, where ∅ is an empty set. Two characterizations of high matrix can now easily be
deduced.
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Lemma 3 The following statements are equivalent.

1. A is high.
2. k = 0.
3. ∪1 ≤ i ≤ mTi = N .

Proof It will be shown that each of the latter two statements are equivalent to the
first.

(1 ⇐⇒ 2) It is easy to see that the jth column of A contains a maximal element of
a row if and only if kj = 0. Hence A is a high matrix if and only if k = 0.

(1 ⇐⇒ 3) For any column index j, it follows from ∪1 ≤ i ≤ mTi = N that there exists
a Ti0 such that j ∈ Ti0 . Then the element of A in the i0th row and the jth column is
a maximal element of the i0th row, and therefore the jth column contains a maximal
element of the i0th row. Hence A is a high matrix.

Conversely, ∀j ∈ N , let the jth column of A contain the maximal element ai′j of the
row i′. It follows immediately from (13) above that j ∈ Ti′ . So, ∪1 ≤ i ≤ mTi ⊇ N . But it
is clear that ∪1 ≤ i ≤ mTi ⊆ N . Hence ∪1 ≤ i ≤ mTi = N . The proof is completed. ��

The next result is one of the key contributions of this paper.

Theorem 1 Let F(x) be a max-only function of type (n, m) and A the corresponding
matrix. The global optimization (8) has a solution if and only if

n∑

j=1

kj ≥ b. (14)

Furthermore, if an equality in (14) holds then (8) has a unique solution.

Proof Since (14) holds, for any decomposition b = ∑n
j = 1 bj, bj ≥ 0, and bj ≤ kj, 1 ≤

j ≤ n, by setting b := [b1 . . . bn]τ , b ∈ X . If the jth column of A contains a maximal
element of a row, then kj = 0, and so bj = 0. Hence, it follows that F(b) = c, i.e., b
is a globally optimal solution of (8). Conversely, let x̄ = [x̄1 . . . x̄n]τ be a solution of
the global optimization (8), i.e., F(x̄) = c. By an easy direct computation, it can be
obtained that

x̄ ≤ k. (15)

Hence b = ∑n
j = 1 x̄j ≤ ∑n

j = 1 kj.
Let x = [x1 . . . xn]τ be any solution of (8). It follows that (14) holds. It can

be seen that the equality in (14) holds implies that the equality in (15) holds, i.e.,
x = [k1 . . . kn]τ . The proof is completed. ��

Since
∑n

j = 1 kj ≥ b > 0, k �= 0. It follows immediately from Lemma 3 that if a
max-only system has a globally optimal solution then the corresponding A is certainly
a non-high matrix. If a max-only system satisfies condition (14), it has at least one
globally optimal solution. It can be seen from the first half proof of Theorem 1 that
if the number of decompositions of b is infinite then the global optimization of a
max-only system has an infinite number of solutions. It is easy to see that if inequality
(14) is strict and there are two non-zero components in kj, 1 ≤ j ≤ n, then the number
of decompositions of b is infinite. Hence, when there are two non-zero components in
kj, 1 ≤ j ≤ n, the global optimization has a unique solution that implies the equality
in (14) holds.
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4 Globally optimal solutions

Let us now consider a general case of global optimization (8) and begin with recalling
the max-only projection representation of max–min functions.

Let F(x) be a max–min function of type (n, m) such as (6). [aαi
i1 . . . aαi

in] over Rmax is
said to be the coefficient row vector of f αi

i (x). An m×n max-plus matrix A associating
with F(x) is constructed by taking the coefficient row vector of f αi

i (x) as the ith row
of A. The matrix A constructed in this way is called a max-only projection of F(x).
The set of all max-only projections of F(x) is uniquely determined and is denoted
by P(F). P(F) is clearly with combinational nature. It follows from the conjunctive
normal form (6) that the coefficient row vectors corresponding to f αi

i (x) are distinct.
By the way constructing max-only projections and the multiplication principle, P(F)

contains
∏m

i=1 l(i) distinct max-only projections, where two matrices are regarded as
equal if and only if their (i, j)-entries are equal. It follows easily from (6) that any
max–min function can be rewritten as

F(x) = ∧r∈I Arx, (16)

where Ar ∈ R
m×n
max are max-only projections of F(x), x ∈ R

n and I is the finite index
set of all max-only projections. The equality (16) is called the max-only projection
representation of F(x). When m = n, the representation (16) is the key link in a chain
of a calculation for a cycle time (Gaubert and Gunawardena 1998a; Gunawardena
1994b). The following investigation also proceeds from the representation (16).

Lemma 4 Let f αi
i (x) be a max-only function of type (n, 1) of Fi(x) such as (6). If

max{aαi
i1 , . . . , aαi

in} > ci, then f αi
i (x) > ci for any x ∈ X .

Proof Since max{aαi
i1 , . . . , aαi

in} > ci, f αi
i (0) > ci. ∀x ∈ X , since x ≥ 0, it follows from the

property of monotonicity of f αi
i (x) (by Lemma 1) that f αi

i (x) ≥ f αi
i (0) > ci. The proof

is completed. ��
Based on Lemma 4, some max-only functions of type (n, 1) of Fi(x) such as (6)

do not need to consider for the global optimization. The max-only function f αi
i (x) of

type (n, 1) of Fi(x) is said to be redundant if it satisfies the condition of Lemma 4.
By removing all redundant max-only functions from a conjunctive normal form of
Fi(x), the partial conjunctive normal form of Fi(x) is obtained, which is denoted by
F̄i(x). Correspondingly, the subset of P(F) and the partial representation of F(x) can
be obtained, respectively. The former is denoted by SP(F), the latter is denoted by
F̄(x) := ∧s∈J Asx, where J is the index set of all max-only projections in SP(F).
Clearly, J is a subset of I.

Definition 3 Let F(x) be a max–min function of type (n, m). The set SP(F) is called
the optimal max-only projection set of F(x). F̄(x) := ∧s∈J Asx is called the partial
max-only projection representation of F(x).

The criterion for the existence of globally optimal solutions can now be deduced
below.

Theorem 2 Global optimization (8) has a solution if and only if there exists at least a
max-only projection satisfying inequality (14) in SP(F).
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Proof Let x̄ be a globally optimal solution of (8). Since Fi(x̄) = ci, for 1 ≤ i ≤ m,
there must exist the max-only functions of type (n, 1), f αi

i (x), such that f αi
i (x̄) = ci. By

the coefficient row vectors of f αi
i (x), 1 ≤ i ≤ m, the max-only projection As can be

constructed and Asx̄ = c. By Lemma 4, As ∈ SP(F). It follows from Theorem 1 that
As satisfies condition (14).

Conversely, let As be a max-only projection in SP(F). Since As satisfies condition
(14), by Theorem 1, there exists an x̃ such that Asx̃ = c in X . It follows from Lemma 4
that Arx̃ ≥ c for all Ar ∈ P(F). Hence F(x̃) = c, i.e., x̃ is a globally optimal solution of
(8). The proof is completed. ��

The proof of Theorem 2 also results in the following corollary.

Corollary 1 All solutions of Asx = c, for any s ∈ J , are solutions of (8). Conversely, a
solution of (8) is a solution of As0 x = c, for some s0 ∈ J .

Before proceeding to the next main result—the uniqueness of globally optimal
solutions—it will be convenient and useful to introduce the following notation first.

Any max-only projection As in SP(F) corresponds to the column vector

[ks
1 . . . ks

n]τ , (17)

where ks
j , 1 ≤ j ≤ n, are defined as (12).

Definition 4 The column vector (17) is called the sth control vector of F(x) relative to
SP(F) and is denoted by ks.

From Theorem 2 and Definition 4 the following corollary can immediately be
deduced.

Corollary 2 Global optimization (8) has a solution if and only if F(x) has at least a
control vector ks satisfying the inequality

∑n
j=1 ks

j ≥ b.

Theorem 3 If all control vectors satisfying condition (14) are the same and satisfy the
equality in (14), then global optimization (8) has a unique solution.

Proof Let ks be a control vector satisfying the inequality
∑n

j=1 ks
j ≥ b and As the

corresponding max-only projection. Since
∑n

j=1 ks
j = b, by Theorem 1, Asx = c has

a unique solution x̄ and x̄ = ks. Since all control vectors ks are just the same, all
the corresponding Asx = c have only one solution. Hence, by Corollary 1, (8) has a
unique solution. The proof is completed. ��

It is clear that if global optimization (8) has a unique solution then all the control
vectors satisfying condition (14) are the same. Furthermore, if this same control vector
contains at least two non-zero components, then it must satisfy the equality in (14).

It can be seen from Theorems 2 and 3 that the existence and uniqueness of the
globally optimal solutions depend on the optimal max-only projection set SP(F). In
fact, Corollary 2 and Theorem 3 imply that for any system, all globally optimal solu-
tions are determined by the control vectors. For 1 ≤ i ≤ m, if Fi(x) do not have any
redundant max-only function, SP(F) = P(F), and the latter is quite large. It is notable
that the uniqueness of globally optimal solutions implies a stronger constraint on all
control vectors.
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5 Algorithm and example

First, based on the constructive methods in the previous sections, the following algo-
rithm is presented to find all globally optimal solutions of (8).
Algorithm

Step 1 Distribute + over ∨ and ∧ such that there exist only terms of the form xj + a
with respect to ∨ and ∧ in Fi(x).

Step 2 Distribute ∨ over ∧ to obtain a conjunctive form of Fi(x).
Step 3 For f βi

i (x), if there exists an f αi
i (x) such that aαi

ij ≤ aβi
ij , 1 ≤ j ≤ n in a conjunctive

form of Fi(x), remove f βi
i (x) to obtain the normal form of Fi(x).

Step 4 Taking x = 0 in the conjunctive normal form Fi(x), obtain ci.
Step 5 If max{aαi

i1 , . . . , aαi
in} > ci, remove f αi

i (x) from the conjunctive normal form of
Fi(x) to obtain F̄i(x).

Step 6 Construct the set SP(F).
Step 7 Compute ks for As in SP(F), and pick out As if ks �= 0.
Step 8 If ks satisfies the inequality (14), decompose b = ∑n

j=1 bj such that 0 ≤ bj ≤
ks

j , 1 ≤ j ≤ n. Taking x̃ = [b1 . . . bn]τ , obtain a solution of Asx = c.
Step 9 Put the solutions of all Asx = c together and obtain all globally optimal solu-

tions of (8).

Next, a numerical example is given to illustrate how the algorithm works in practice.
Example The max–min system G is described by the max–min function G(x) of

type (3, 3), whose three components are given by

G1(x) = (3 + x3 ∧ (1 + x1 ∨ 2 + x2 ∨ x3) + 2) ∨ 4 + x2,
G2(x) = (2 + x1 ∨ 5 + x2 ∨ 1 + x3) ∧ (3 + x1 ∨ 5 + x2),
G3(x) = (1 + x1 ∨ 3 + x2) ∧ (x1 ∨ 2 + x2 ∨ 4 + x3).

(18)

Distribute + over ∨, ∨ over ∧, and apply max-plus algebra to obtain the conjunctive
forms of Gi(x), 1 ≤ i ≤ 3:

G1(x) = (ε + x1 ∨ 4 + x2 ∨ 3 + x3) ∧ (3 + x1 ∨ 4 + x2 ∨ 2 + x3),
G2(x) = (2 + x1 ∨ 5 + x2 ∨ 1 + x3) ∧ (3 + x1 ∨ 5 + x2 ∨ ε + x3),
G3(x) = (1 + x1 ∨ 3 + x2 ∨ ε + x3) ∧ (x1 ∨ 2 + x2 ∨ 4 + x3).

(19)

It is easy to compute c = F(0) = [4 5 3]τ . Clearly, both G1(x) and G2(x) do not
have any redundant max-only function of type (3, 1). Since max{0, 2, 4} > 3, removing
the redundant max-only function f 2

3 (x) = x1 ∨ 2 + x2 ∨ 4 + x3 from the conjunctive
normal form of G3(x), obtain Ḡ3(x) = 1 + x1 ∨ 3 + x2 ∨ ε + x3. Hence, the partial
conjunctive normal forms of Gi(x), 1 ≤ i ≤ 3 are

Ḡ1(x) = (ε + x1 ∨ 4 + x2 ∨ 3 + x3) ∧ (3 + x1 ∨ 4 + x2 ∨ 2 + x3),
Ḡ2(x) = (2 + x1 ∨ 5 + x2 ∨ 1 + x3) ∧ (3 + x1 ∨ 5 + x2 ∨ ε + x3),
Ḡ3(x) = 1 + x1 ∨ 3 + x2 ∨ ε + x3,

(20)

respectively. It is easy to see that SP(G) contains four max-only projections:

A1 =
⎡

⎣
ε 4 3
2 5 1
1 3 ε

⎤

⎦ , A2 =
⎡

⎣
ε 4 3
3 5 ε

1 3 ε

⎤

⎦ ,
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A3 =
⎡

⎣
3 4 2
2 5 1
1 3 ε

⎤

⎦ , A4 =
⎡

⎣
3 4 2
3 5 ε

1 3 ε

⎤

⎦ .

By (11) and (12), the corresponding control vectors are obtained below:

k1 = [2 0 1]τ , k2 = [2 0 1]τ , k3 = [1 0 2]τ , k4 = [1 0 2]τ .

Hence, A1, A2, A3, and A4 are all non-high matrices.
For X 0 := {x ∈ R

3| ∑3
j=1 xj = 3, xj ≥ 0, 1 ≤ j ≤ 3}, k1, k2, k3, and k4 satisfy the

equality in (14). Then every Aix = c has a unique solution, which is denoted by x0
i ,

and therefore the system G has only two globally optimal solutions

x0
1 = x0

2 = [2 0 1]τ and x0
3 = x0

4 = [1 0 2]τ .

For X 1 := {x ∈ R
3| ∑3

j=1 xj = 2, xj ≥ 0, 1 ≤ j ≤ 3}, k1, k2, k3, and k4 satisfy the strict
inequality in (14) and the system G has an infinite number of solutions, i.e.,

x1
1 = x1

2 = [t1 0 t3]τ , 0 ≤ t1 ≤ 2, 0 ≤ t3 ≤ 1, t1 + t3 = 2

and

x1
3 = x1

4 = [t1 0 t3]τ , 0 ≤ t1 ≤ 1, 0 ≤ t3 ≤ 2, t1 + t3 = 2.

The solutions above can be rewritten together as

x1 = [t1 0 t3]τ , t1 + t3 = 2, t1, t3 ≥ 0.

Finally, let us discuss the complexity of the algorithm.

Algorithmic issue In the case of max-only systems, the method of Section 3 can give
an efficient algorithm of finding all the global optimal solutions.

Theorem 4 There is a polynomial algorithm for finding all the global optimal solutions
of max-only systems.

Proof First, it is easy to see that Steps 4, 7, and 8 in the preceding algorithm can con-
stitute an algorithm for all the global optimal solutions of max-only systems described
by (10). Next, let us show this algorithm is polynomial.

To compute ci requires at most n − 1 maximum operations, and then the number
of the operations of finding c is not greater than m(n − 1). From (11) and (12), to
compute ki requires at most m arithmetic operations and m − 1 minimum operations,
and then the number of the operations of finding k is not greater than (2m − 1)n. To
compute

∑n
j=1 kj requires at most n − 1 arithmetic operations. Therefore, the sum of

operations of finding all the global optimal solutions is at most 3mn − m − 1. Without
loss of generality, suppose m ≤ n. Hence

3mn − m − 1 ≤ 3n2 − n − 1.

The above inequality indicates that the algorithm has time complexity O(n2). The
proof is completed. ��
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However, for general max–min systems the situation is more complex. The problem
stems from the fact that a max–min function F(x) of type (n, m) is typically presented
in the form of F̄(x) := ∧s∈J Asx where J is a subset of I. For the aforementioned
system G, all the globally optimal solutions can be obtained by considering only two
max-only projections although SP(G) contains four different max-only projections.
This should imply that all global optimal solutions of (8) can be given by some of
max-only projections in SP(F). However, in general, to get all globally optimal solu-
tions, the information in all the max-only projections of SP(F) must be used. This
situation seems very similar to rectangularity in the Duality Theorem which is known
to be important in max–min systems (Cochet-Terransson et al. 1999; Gaubert and
Gunawardena 1998a, b). Let us see the following specific example.

The max–min system L is described by the max–min function L(x) of type (3, 2),
whose two components are given by

L1(x) = x1 ∨ 7 + x2,
L2(x) = (5 + x1 ∨ 9 + x2 ∨ 3 + x3) ∧ (3 + x1 ∨ 9 + x2 ∨ 5 + x3)

∧(6 + x1 ∨ 9 + x2 ∨ 1 + x3) ∧ (4 + x1 ∨ 9 + x2 ∨ 4 + x3).
(21)

Clearly, SP(L) = P(L), and SP(L) contains four max-only projections:

A1 =
[

0 7 ε

5 9 3

]

, A2 =
[

0 7 ε

3 9 5

]

,

A3 =
[

0 7 ε

6 9 1

]

, A4 =
[

0 7 ε

4 9 4

]

.

The corresponding control vectors

k1 = [4 0 6]τ , k2 = [6 0 4]τ , k3 = [3 0 8]τ , k4 = [5 0 5]τ

are different. It is easy to see that for the constraint condition
∑3

j=1 xj = 8, xj ≥ 0, 1 ≤
j ≤ 3, all globally optimal solutions of L must be determined by k1, k2, k3, and k4.

The above analysis means that the execution time of the algorithm depends heavily
on the number of max-only projections.

Therefore, the complexity of the algorithm is mainly determined by two factors:
the conjunctive normal form of per component and the number of non-redundant
max-only functions of type (n, 1). Although the method used to obtain a conjunctive
normal form are constructive in nature, its computational complexity is very high in
practice. On the other hand, let F̄i(x), 1 ≤ i ≤ m consist of l′(i) max-only functions of
type (n, 1). Then the number of max-plus projections of F̄(x) is

∏m
i=1 l′(i). It is clear

that
∏m

i=1 l′(i) ≤ ∏m
i=1 l(i). From the system L, it is possible that an equality in the

above inequality holds. Hence, searching SP(F) for all max-only projections satisfying
inequality (14) is prohibitively expensive.

From the above, it can be seen that the algorithm proposed in this paper is intrinsi-
cally a computationally hard problem and is not well suited for problems with a large
number of variables. For such kind of systems one could try to develop algorithms
that only search one solution, since in many cases all solutions are not needed. One
possible approach is to find one max-only projection satisfying inequality (14).

Let us see a numerical experiment for the computation time of the algorithm. The
numbers of variables are fixed to be 50–70. The results of this numerical test are shown
in Table 1 below. Here n the number of variables, m the number of components, r
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Table 1 Numerical results n m r s t

50 5 3,125 500 2.6100
50 6 15,625 9,375 110.1560
60 5 3,125 3,125 19.5780
60 6 15,625 15,625 345.2350
70 5 3,125 3,125 22.7500
70 6 15,625 15,625 404.7500

the number of max-only projections in P(F), s the number of max-only projections in
SP(F), and t the computational time in a workstation.

6 Conclusions and future work

In general, the problems of global optimization are very difficult to solve due to their
combinatorial nature (Horst et al. 2000; Pardalos et al. 2002). However, it is possible
to solve specially structured problems. Based on max-plus algebra and structure of
max–min functions, this paper has developed the methods to solve the global optimi-
zation problem of max–min systems and established the criteria of the existence and
uniqueness of globally optimal solutions. The criteria are of algebraic and combina-
torial type. The proposed method is direct and constructive in nature and results in
an algorithm of finding all globally optimal solutions.

It may not be necessary to obtain all solutions of the global optimization in some
cases. Our further research efforts will concentrate on developing an efficient algo-
rithm that yields only one global optimal solution. In addition, the ideas introduced in
this paper may be used in the following maximization problem for max–min systems

maximize F(x),

subject to x ∈ X (22)

and some of the concepts and results paralleling to the programming (1) can be
obtained. It would be interesting to find the conditions of the existence and unique-
ness of globally optimal solutions if the objective function in (1) does not satisfy the
condition (9). It would also be interesting to investigate the programming problems
under more constraint conditions for max–min systems (see a numerical example in
Appendix). The problem discussed in this paper is also a class of non-convex global
optimizations. Another direction is to develop the cutting angle method for finding
all globally optimal solutions.
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Appendix: an example for more constraint conditions

This appendix provides a numerical example of the programming with more constraint
conditions for max–min systems.

The max–min system H is described by the function H(x) of type (2, 2), whose
conjunctive normal forms of two components are given by

H1(x) = (1 + x1 ∨ 2 + x2) ∧ (2 + x1 ∨ 1.5 + x2),
H2(x) = (3 + x1 ∨ 1 + x2) ∧ (2 + x1 ∨ 3 + x2).

(23)

Consider the following programming problem of the system H:

minimize H(x), (24)

subject to gj(x) ≤ 0, j = 1, 2, (25)

0 ≤ x1, x2 ≤ 1, (26)

∨j = 1,2{gj(x) ≤ 0}, (27)

where g1(x) = x1 + 2x2 − 3, g2(x) = 3x1 + x2 − 4.
Clearly, H(0) = [2 3]τ . Let h0 = [2 3]τ . For all two-dimensional column vectors

x satisfying conditions (25) and (26), it is easy to prove from the monotonicity that
h0 ≤ H(x). Let us now find a non-zero two-dimensional column vector x0 satisfying all
constraint conditions such that H(x0) = h0. By the definition of max-only projection,
P(H) contains four max-only projections:

A1 =
[

1 2
3 1

]

, A2 =
[

1 2
2 3

]

,

A3 =
[

2 1.5
3 1

]

, A4 =
[

2 1.5
2 3

]

.

The programming problem above can be reduced to solve the following systems of
linear equations over Rmax:

E1 : A1x = h0, E2 : A2x = h0, E3 : A3x = h0, E4 : A4x = h0.

It is clear that the equations E1 and E4 have no non-zero solution under constraint
conditions (25) and (26). By a direct calculation, the equations E2 and E3 have non-
zero solutions

x̄2 = [x̄2
1 0]τ , 0 < x̄2

1 ≤ 1 (28)

and

x̄3 = [0 x̄3
2]τ , 0 < x̄3

2 ≤ 0.5, (29)

respectively. By comparing (28) and (29), it can be seen that x̄0 = [1 0]τ is a unique
solution of the programming.

It can be seen from the process of the answer above that the investigation for
general programming problems corresponding to this example is more difficult than
one of this paper. The example suggests that some of the concepts and results of this
paper should be reconsidered in the light of new results on the general programming
problems. The authors believe that the high matrix, partial max-only projection, and
ks-control vector introduced in Sections 3 and 4 will be key tools in analyzing such
programming problems.
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